Skillnad mellan aritmetisk sekvens och geometrisk sekvens: aritmetik vs geometrisk sekvens | Aritmetik vs Geometrisk Progression
Aritmetisk sekvens vs geometrisk sekvens
Studien av mönster av tal och deras beteende är en viktig studie inom matematikområdet. Ofta kan dessa mönster ses i naturen och hjälper oss att förklara deras beteende vetenskapligt. Aritmetiska sekvenser och geometriska sekvenser är två av de grundläggande mönster som förekommer i siffror, och ofta finns i naturfenomen.
Sekvensen är en uppsättning beställda nummer. Antalet element i sekvensen kan antingen vara ändliga eller oändliga.
Mer om Aritmetisk sekvens (Aritmetrisk Progression)
En aritmetisk sekvens definieras som en sekvens av siffror med en konstant skillnad mellan varje konsekutiv term. Det är också känt som aritmetisk progression.
Aritmetisk Sequnece ⇒ a 1 , a 2 , a 3, a 4 , …, a n <; där a 2 = a 1 + d, a 3 = a 2 + d, och så vidare.
1 och den vanliga skillnaden är d, ges sekvensen n th av a
n = a 1 + (n-1) d Genom att ta ovanstående resultat kan n
th termen ges också som; a
n = a m + (nm) d, där a m är en slumpmässig term i sekvensen så att n> m.
Satsen med jämntal och uppsättningen udda tal är de enklaste exemplen på aritmetiska sekvenser, där varje sekvens har en gemensam skillnad (d) på 2.Antalet termer i en sekvens kan vara antingen oändliga eller ändliga. I det oändliga fallet (n → ∞) tenderar sekvensen att vara oändlig beroende på den vanliga skillnaden (a n → ± ∞). Om vanlig skillnad är positiv (d> 0) tenderar sekvensen att vara positiv oändlighet och, om vanlig skillnad är negativ (d <0) tenderar den att vara negativ oändlighet. Om villkoren är ändliga är sekvensen också ändlig.
n = a 1 + a 2 + a 3 + a 4 + ⋯ + a n = Σ i = 1 → n a i; och S n = (n / 2) (a 1 + a n ) = (n / 2) [2a 1 < + (n-1) d] ger värdet av serien (S n) . Mer om Geometrisk Sequence (Geometrisk Progression)
Geometrisk sekvens ⇒ a
1, a
2 , a 3 , a 4 , …, a n <; där a 2 / a 1 = r, a 3 / a 2 = r och så vidare, där r är en riktig siffra. Det är lättare att representera den geometriska sekvensen med hjälp av det gemensamma förhållandet (r) och den ursprungliga termen (a). Följaktligen är den geometriska sekvensen ⇒ a 1 , a 1
r, a 1 r 2 , a 1 r 3 , …, a 1 r n-1 . Den allmänna formen av n th termerna ges av en n = a 1
r n-1 . (Förlora prenumerationen av den ursprungliga termen ⇒ a n = ar n-1 ) Den geometriska sekvensen kan också vara ändlig eller oändlig. Om antalet termer är ändliga, sägs sekvensen vara ändlig. Och om villkoren är oändliga kan sekvensen antingen vara oändlig eller ändlig beroende på förhållandet r. Det gemensamma förhållandet påverkar många av egenskaperna i geometriska sekvenser. r> o
r = 1
Konstant sekvens, i. e. a n |
= konstant |
r> 1 Sekvensen avviker - exponentiell tillväxt, i. e. a n |
→ ∞, n → ∞ |
r <0 |
|
Sekvensen är oscillerande men konvergerar |
r = 1 Sekvensen växlar och är konstant, i. e. a n |
|
= ± konstant r <-1 |
Sekvensen växlar och avviker. jag. e. a |
n |
→ ± ∞, n → ∞ |
r = 0 Sekvensen är en sträng av nollor N. B: I samtliga fall ovan är en |
|
1 > 0; Om en |
1 <0, kommer tecknen relaterade till en n |
|
att inverteras. |
Tidsintervallet mellan studsarna av en boll följer en geometrisk sekvens i den idealiska modellen, och det är en konvergent sekvens. |
Summan av termerna i den geometriska sekvensen är känd som en geometrisk serie; S n = ar + ar 2 + ar 3 + ⋯ + ar
n
= Σ i = 1 → n ar i . Summan av den geometriska serien kan beräknas med hjälp av följande formel. S n = a (1-r n ) / (1-r) ; där a är den ursprungliga termen och r är förhållandet. Om förhållandet r <1, konvergerar serien. För en oändlig serie anges värdet av konvergens av S n = a / (1-r) Vad är skillnaden mellan aritmetisk och geometrisk sekvens / progression?
• I en aritmetisk sekvens har alla två på varandra följande termer en gemensam skillnad (d), medan i geometriska sekvenser har två konsekutiva termer en konstant kvot (r). • I en aritmetisk sekvens är variationen av termer linjär, i. e. en rak linje kan dras genom alla punkterna. I en geometrisk serie är variationen exponentiell; antingen växande eller sönderfall baserat på det gemensamma förhållandet. • Alla oändliga aritmetiska sekvenser är divergerande, medan oändliga geometriska serier antingen kan vara divergerande eller konvergerande. • Den geometriska serien kan visa oscillation om förhållandet r är negativt medan den aritmetiska serien inte visar oscillation