Skillnad mellan sannolikhetsfördelning och sannolikhetsdensitetsfunktion:

Anonim

Sannolikhetsfördelning Funktion vs sannolikhetsdensitetsfunktion

Sannolikhet är sannolikheten för att en händelse ska inträffa. Denna idé är mycket vanlig och används ofta i det dagliga livet när vi bedömer våra möjligheter, transaktioner och många andra saker. Att utvidga detta enkla koncept till en större uppsättning händelser är lite mer utmanande. Vi kan till exempel inte enkelt räkna ut chanserna att vinna ett lotteri, men det är bekvämt, ganska intuitivt att säga att det finns en sannolikhet att en av sex att vi ska få nummer sex i en tärning som kastas.

När antalet händelser som kan äga rum blir större, eller antalet enskilda möjligheter är stor, misslyckas denna ganska enkla ide om sannolikhet. Därför måste den ges en fast matematisk definition innan man närmar sig problem med högre komplexitet.

När antalet händelser som kan äga rum i en enda situation är stor är det omöjligt att överväga varje händelse individuellt som i exempel på tärningarna som kastas. Därför sammanfattas hela uppsättningen händelser genom att införa begreppet slumpmässig variabel. Det är en variabel som kan anta värdena för olika händelser i den speciella situationen (eller provutrymmet). Det ger en matematisk känsla till enkla händelser i situationen och matematiskt sätt att ta itu med händelsen. Mer exakt är en slumpmässig variabel en reell värdefunktion över elementen i provutrymmet. Slumpmässiga variabler kan antingen vara diskreta eller kontinuerliga. De betecknas vanligtvis av stora bokstäverna i det engelska alfabetet.

Sannolikhetsfördelningsfunktionen (eller helt enkelt sannolikhetsfördelningen) är en funktion som tilldelar sannolikhetsvärdena för varje händelse. jag. e. det ger en relation till sannolikheten för de värden som den slumpmässiga variabeln kan ta. Sannolikhetsfördelningsfunktionen definieras för diskreta slumpvariabler.

Sannolikhetstäthetsfunktionen är ekvivalent av sannolikhetsfördelningsfunktionen för de kontinuerliga slumpvariablerna, ger sannolikheten för att en viss slumpmässig variabel antar ett visst värde.

- <->

Om X är en diskret slumpmässig variabel, används funktionen som f (x) = P (X = x) för varje x inom intervallet X kallas sannolikhetsfördelningsfunktionen.En funktion kan fungera som sannolikhetsfördelningsfunktion om och endast om funktionen uppfyller följande villkor. 1.

f (x)> 0 2. Σ

f (x) = 1 En funktion

f (x) som definieras över uppsättningen av reella tal är kallas sannolikhetsdensitetsfunktionen för den kontinuerliga slumpmässiga variabeln X, om och endast om P

(a x < b) b f ( x) dx för alla reella konstanter a < och b. Funktionen för sannolikhetstäthet bör också uppfylla följande villkor. 1. f

(x) ≥ 0 för alla x: -∞ << x <+ ∞ 2. -∞ ∫ + ∞

f ( x ) dx = 1 Både sannolikhetsfördelning och sannolikhetstäthet funktionen används för att representera fördelningen av sannolikheter över provutrymmet. Vanligtvis kallas dessa sannolikhetsfördelningar. För statistisk modellering erhålls standard sannolikhetsdensitetsfunktioner och sannolikhetsfördelningsfunktioner. Den normala fördelningen och normal normalfördelning är exempel på de kontinuerliga sannolikhetsfördelningarna. Binomialfördelning och Poissonfördelning är exempel på diskreta sannolikhetsfördelningar. Vad är skillnaden mellan sannolikhetsfördelning och sannolikhetsdensitetsfunktion? • Funktionsfördelningsfunktionen och sannolikhetsdensitetsfunktionen är funktioner definierade över provutrymmet, för att tilldela det relevanta sannolikhetsvärdet till varje element.

• Funktionsfördelningsfunktioner definieras för de enskilda slumpmässiga variablerna, medan sannolikhetsdensitetsfunktionerna definieras för de kontinuerliga slumpmässiga variablerna.

• Fördelningen av sannolikhetsvärden (i. E. Sannolikhetsfördelningar) illustreras bäst av sannolikhetsdensitetsfunktionen och sannolikhetsfördelningsfunktionen.

• Sannolikhetsfördelningsfunktionen kan representeras som värden i en tabell, men det är inte möjligt för sannolikhetsdensitetsfunktionen eftersom variabeln är kontinuerlig.

• När plottat ger sannolikhetsfördelningsfunktionen ett streckdiagram medan sannolikhetsdensitetsfunktionen ger en kurva.

• Höjden / längden på siffrafördelningsfunktionens stavar måste läggas till 1 medan området under sannolikhetsdensitetsfunktionens kurva måste läggas till 1.

• I båda fallen är alla värden för funktionen måste vara icke-negativ.